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In this article, we present a method to delete genes in filamentous fungi that allows recycling of the selection marker and is effi-
cient in a nonhomologous end-joining (NHEJ)-proficient strain. We exemplify the approach by deletion of the gene encoding the
transcriptional regulator XlnR in the fungus Aspergillus niger. To show the efficiency and advantages of the method, we deleted 8
other genes and constructed a double mutant in this species. Moreover, we showed that the same principle also functions in a
different genus of filamentous fungus (Talaromyces versatilis, basionym Penicillium funiculosum). This technique will increase
the versatility of the toolboxes for genome manipulation of model and industrially relevant fungi.

Genetic studies in filamentous fungi can be limited by the tools
available for genome manipulation. For example, gene re-

placement in Aspergillus niger, a filamentous fungus used in many
industrial processes (1–3), is typically based on transformation
with a linear DNA fragment of selection marker flanked by target
gene flanking regions. This is limited by the number of selection
markers available and the requirement for fungal strains with
multiple auxotrophies. Moreover, DNA integration through
homologous recombination is inefficient. Most integration oc-
curs ectopically through nonhomologous end joining (NHEJ) (4,
5). To circumvent this, NHEJ-inactivated strains are used (4–7),
although such strains may show genomic instability (5, 7).

We present a method for gene deletion in filamentous fungi
based on recombination between a plasmid and the chromosome
initially developed for Saccharomyces cerevisiae (8). We use pyrG,
encoding orotidine-5-phosphate decarboxylase, as a marker that
can be selected and counterselected, allowing recycling of selec-
tion markers, hence leaving no mark on the genome (9). Indeed
cells lacking this enzyme cannot grow without exogenous uridine/
uracil, while these cells are resistant to the toxicity of 5-fluoro-
orotic acid. To demonstrate the advantages and efficiency of this
method in filamentous fungi, we deleted the xlnR gene coding for
the xylanolytic transcriptional regulator in two species of filamen-
tous fungi from different genera (A. niger and Talaromyces versa-
tilis). Furthermore, 8 other genes were deleted from A. niger, and
two genes coding for hydrophobins were deleted from the same
strain. All of these gene deletions, in both strains, were performed
in a strain proficient in NHEJ.

MATERIALS AND METHODS
Strains and growth media. Escherichia coli strain XL1-Blue MRF= (Strat-
agene) was grown according to the supplier’s instructions, in medium
supplemented with ampicillin (100 �g/ml), X-Gal (5-bromo-4-chloro-3-
indolyl-�-D-thiogalactopyranoside) (30 �g/ml), and IPTG (isopropyl-�-
D-thiogalactopyranoside) (1 mg/ml) (Sigma), where required, and was
used for all DNA manipulation steps. The A. niger strain used was AB4.1
(�pyrG) (10). A. niger culture and medium composition were described
in reference 11. The T. versatilis (�pyrG) strain used in this study origi-
nated from the industrial strain IMI378536, an Adisseo France S.A.S.
property strain (18). This strain was maintained on potato dextrose agar
(PDA) supplemented with 10 mM uridine. T. versatilis �pyrG cultures

were grown in 200 ml of MN-Uri medium (NaNO3, 150 g/liter; KCl, 13
g/liter; KH2PO4, 38 g/liter; ZnSO4 · 7H2O, 22 g/liter; H3BO3, 11 g/liter;
MnCl2 · 4H2O, 5 g/liter; FeSO4 · 7H2O, 5 g/liter; CoCl2 · 5H2O, 1.7 g/liter;
CuSO4 · 5H2O, 1.6 g/liter; Na2MoO4 · 2H2O, 1.5 g/liter; EDTA Na2, 50
g/liter; glucose monohydrate, 15 g/liter; Casamino Acids, 1.25 g/liter; uri-
dine, 2.43 g/liter; MgSO4, 0.24 g/liter).

Construction of plasmids. Molecular cloning techniques were per-
formed using standard procedures (12). DNA polymerase was Phusion
(NEB). Primers (see the supplemental material) were designed using the
A. niger CBS 513.88 (13) and T. versatilis sequences (unpublished data).

Transformation procedures. Polyethylene glycol (PEG)-mediated
transformation of protoplasts was used with both fungal species using
minor modifications to standard procedures (14). For both fungi, 25
mg/ml of lysing enzymes from Trichoderma harzianum (Sigma) were used
per gram of wet mycelia. For A. niger, 4 mg/ml chitinase (Sigma) and 100
mg/ml bovine serum albumin (BSA) were added per gram of wet myce-
lium. For transformation of A. niger, 1.5 � 106 protoplasts were trans-
formed with 3 �g of plasmid DNA. The transformed cell pellet was then
resuspended in 300 �l STC (1.2 M sorbitol, 10 mM Tris base, 50 mM
CaCl2 [pH 7.5]), and transformed mycelia were regenerated on osmoti-
cally stabilized medium containing 1.2 M sorbitol. For transformation of
T. versatilis, 107 protoplasts were transformed with 10 �g plasmid DNA,
and mycelia were regenerated using procedures described elsewhere (15).

Electroporation was used to transform E. coli.

RESULTS AND DISCUSSION
Construction of pC3 and pC7 integrative plasmids. A 2,865-bp
HindIII/EcoRI digest DNA fragment of plasmid pAo4-13 (16),
containing the pyrG locus of Aspergillus oryzae, which include the
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gene and its native promoter, was blunt ended and cloned into the
backbone of the plasmid pBluescript SK� (Stratagene) at the PsiI
site, in both orientations, generating plasmids pC3 and pC7 (Fig.
1A). We constructed plasmids with both orientations of pyrG in
case expression of the gene interfered with insertion or excision of
the plasmid during the deletion steps. The plasmids retain the
blue/white screening capability for cloning and 4 unique restric-
tion sites (EcoRI, NotI, SpeI, and XhoI) in the multiple-cloning
site (MCS) to clone the flanking sequences of the locus to be de-
leted. These plasmids are nonreplicative in filamentous fungi as
they lack an origin of replication.

Construction of the Aspergillus niger xlnR deletion mutant.
To delete the xylanolytic transcriptional regulator-encoding gene
xlnR in A. niger, 2,490-bp upstream and 1,878-bp downstream
DNA fragments were amplified by PCR from A. niger N402
genomic DNA. Primers were designed so the upstream and down-
stream fragments contained a common HindIII restriction site to
ligate them together and NotI and SpeI restriction sites for cloning
the joined fragments into the plasmid MCS of pC3 and pC7, to
create the pC3-An_�xlnR and pC7-An_�xlnR integrative plas-

mids (Fig. 1B). Transformations of the A. niger AB4.1 (�pyrG)
strain were performed using pC3-An_�xlnR or pC7-An_�xlnR
integrative plasmids. Transformations, done in triplicate, pro-
duced between 60 and 100 recombinants each, when plated on
medium lacking uridine, to select for the integration of the plas-
mid carrying pyrG on the chromosome (Fig. 1C). No difference in
efficiencies of transformation was observed between plasmids, in-
dicating that there was no interference by the orientation of pyrG
in the integration at the xlnR locus. Transformants were purified
by propagating them twice successively on the same transforma-
tion medium but lacking sorbitol. Transformants were then prop-
agated twice on PDA medium containing 10 mM uridine to re-
lease the selective pressure on the integrated plasmid. To select for
clones that had excised the plasmid (�pyrG), spores were then
resuspended in 0.001% (vol/vol) Tween 80 and spread on Asper-
gillus minimal medium containing 1% (wt/vol) glucose, 1.6 mM
uridine, and 750 �g/ml 5-fluoro-orotic acid. The frequency of
5-fluoro-orotic acid-resistant strain was 8 � 10�4.

Excision can lead to reversal to the wild-type (WT) locus or
deletion of the target locus (Fig. 1C). Ten candidates were

FIG 1 Plasmid vectors pC3 and PC7 and the xlnR deletion strategy in Aspergillus niger. (A) Deletion vectors pC3 and pC7. Restriction enzyme sites available in
the multiple-cloning site and component parts of the vectors are indicated. The white box represents the A. oryzae pyrG locus obtained from plasmid pAo4-13,
and the black arrow inside the pyrG open reading frame. (B) pC3-An_�xlnR plasmid. Flanking regions of xlnR are shaded: upstream in dark gray and downstream
in light gray. (C) Scheme for deletion of xlnR in A. niger by the intermediate of pC3-An_�xlnR plasmid. (i) Recombination between the plasmid and the
chromosome using the homology of the flanking region of xlnR present on the chromosome and the plasmid lead to the integration of the plasmid on the
chromosome. Transformants that have integrated the plasmid are pyrG� and can grow on medium lacking uridine. Transformation with pC3-An_�xlnR gave
60 to 100 pyrG� transformants. (ii) Releasing of the selective pressure for plasmid integration by growing cells on a medium containing uridine allows the
excision of the plasmid. When the plasmid is excised and cured, the cells are �pyrG and can be selected by plating on a medium containing uridine and
5-fluoro-orotic acid. (iii) Excision using the homology of the flanking region can lead either to reversion to the wild-type copy of the gene or to deletion. For the
xlnR gene, 4 out of 10 clones tested by PCR were shown to be deleted.
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screened, using PCR with a primer chosen to amplify the xlnR
region. Four clones showed a product size expected for xlnR dele-
tion (1,020 bp for the deletion mutant compared to 3,760 bp for
the wild type) (see the supplemental material). Deletion was con-
firmed by sequencing the PCR product and the absence of product
in another PCR with primers internal to the xlnR gene (see the
supplemental material). All of these results confirmed that the
xlnR gene was deleted in the A. niger AB4.1 strain. To check if extra
copies of the plasmid remained integrated into the genome of A.
niger due to multiple insertion of the plasmid in the chromosome
of A. niger after the transformation, a Southern analysis of the
genomic DNA restricted with BglII from the wild-type strain and
the xlnR-deleted strain of A. niger was performed using pC3-
An_�xlnR as a probe. The results showed no other bands than the
expected 7-kbp band for the wild type and the 4.1-kbp band for
the xlnR deletion mutant, excluding the possibility of the presence
of supplementary copies of the plasmid in the genome of the xlnR-
deleted strain (see the supplemental material).

Construction of A. niger single and double mutants. To show
the general applicability of the method, we deleted 8 other A. niger
genes coding for various type of proteins; transcription factor,
membrane protein, plant cell wall-degrading enzymes, and small
hydrophobic proteins (Table 1). All of these deletions have been
confirmed by two independent PCRs, one using primers external
to the gene of interest (and sequencing of the PCR products) and
a second PCR using primers internal to the gene. It is of note that
while one of the flanking sequences of xlnR cloned into the inte-
grating plasmid was over 2 kbp (2,490 bp for the upstream frag-
ment), successful gene deletions in A. niger were obtained with
shorter flanking regions of the targeted gene, which can facilitate
construction of the plasmid. For example, we used about 2 kbp
upstream and 1.5 kbp downstream of the hfbD gene and about 1.8
kbp upstream and 1.6 kbp downstream of the hsbA gene to obtain
deletion mutants (Table 1). Finally, as this approach allows for
recycling of the selection marker (pyrG), we also created a strain
carrying deletion of both hydrophobin-encoding genes hfbD and
hyp1. The double mutant strain obtained by this approach was still
�pyrG, so further gene deletions are still possible in this strain,
allowing for dissection of complex genetic networks.

Gene deletion in T. versatilis. To check if the method could be
extended to other fungi, deletion of the xlnR gene of T. versatilis
using the pC3 integrative plasmid was performed. T. versatilis is an
important industrial fungal species used, for example, to produce
a mixture of glycosyl hydrolase enzymes. To delete the T. versatilis
xlnR gene, 1,791-bp upstream and 1,613-bp downstream DNA

fragments of the gene were amplified from genomic DNA, ligated,
and cloned in pC3 to give pC3-Tv_�xlnR. Transformation of this
plasmid into a pyrG-deleted T. versatilis strain was done in dupli-
cate, and plating on a medium lacking uracil gave 20 recombi-
nants and 25 recombinants. This indicates that there is a func-
tional complementation of the T. versatilis pyrG-deleted strain by
the A. oryzae pyrG gene. After release of the selective pressure for
plasmid integration and selection for excision of the plasmid, 9
colonies were screened for the deletion of xlnR by PCR using
primers external to the gene. Five clones showed the expected
673-bp band corresponding to the deletion of the locus, compared
to 3,470 bp of the wild-type locus (see the supplemental material).
This result indicates that the method can be extended to other
genera of fungi.

Conclusions. Genetic analysis in filamentous fungi can be im-
paired by the lack of selection markers for gene deletion and the
low efficiency of homologous recombination compared to ectopic
integration of linear DNA fragments. In this study, we developed
a method for gene deletion that worked in two filamentous fungal
species, A. niger and T. versatilis. This method should also be ef-
fective with other species and genera of filamentous fungi, provid-
ing the availability of a pyrG deletion strain and a functional com-
plementation of the strain by the pyrG present on the plasmid.
This approach is effective in more genetically stable NHEJ-profi-
cient strains, and as it is based on recycling of the selection marker,
it allows the construction of strains with multiple gene deletions.
We did not examine any potential pitfalls of repeated use of selec-
tion based on the use of 5-fluoro-orotic acid, but we are aware
that repeated use of 5-fluoro-orotic acid may cause chromo-
some alterations (16). Although it has not been directly exam-
ined here, the approach could be made more amenable for
high-throughput approaches, such as the Clontech In-Fusion
cloning method or, with modifications, the Life Technologies
Gateway system. The method described will increase the tool-
box for genome manipulation in these important and industri-
ally relevant organisms and adds to those transformation pro-
cedures already described (2, 17).
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